On the convergence of a regularizing Levenberg-Marquardt scheme for nonlinear ill-posed problems
نویسندگان
چکیده
In this note we study the convergence of the Levenberg-Marquardt regularization scheme for nonlinear ill-posed problems. We consider the case that the initial error satisfies a source condition. Our main result shows that if the regularization parameter does not grow too fast (not faster than a geometric sequence), then the scheme converges with optimal convergence rates. Our analysis is based on our recent work on the convergence of the exponential Euler regularization scheme [3].
منابع مشابه
A Regularizing Levenberg - Marquardt Scheme , with Applications to Inverse Groundwaterfiltration
The rst part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fr echet derivative of the nonlinear operator at the exact solu...
متن کاملOn a regularized Levenberg-Marquardt method for solving nonlinear inverse problems
We consider a regularized Levenberg–Marquardt method for solving nonlinear ill-posed inverse problems. We use the discrepancy principle to terminate the iteration. Under certain conditions, we prove the convergence of the method and obtain the order optimal convergence rates when the exact solution satisfies suitable source-wise representations. Mathematics Subject Classification (2000) 65J15 ·...
متن کاملOn the Regularizing Levenberg-marquardt Scheme in Banach Spaces
By making use of duality mappings and the Bregman distance, we propose a regularizing Levenberg-Marquardt scheme to solve nonlinear inverse problems in Banach spaces, which is an extension of the one proposed in [6] in Hilbert space setting. The method consists of two components: an outer Newton iteration and an inner scheme. The inner scheme involves a family of convex minimization problems in...
متن کاملA Statistical Method for Regularizing Nonlinear Inverse Problems
Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. H...
متن کاملPii: S0022-4073(02)00292-3
In this paper we present di0erent inversion algorithms for nonlinear ill-posed problems arising in atmosphere remote sensing. The proposed methods are Landweber’s method (LwM), the iteratively regularized Gauss–Newton method, and the conventional and regularizing Levenberg–Marquardt method. In addition, some accelerated LwMs and a technique for smoothing the Levenberg–Marquardt solution are pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 115 شماره
صفحات -
تاریخ انتشار 2010